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Lattice Boltzmann method on a curvilinear coordinate system:
Vortex shedding behind a circular cylinder

Xiaoyi He1,2 and Gary D. Doolen2
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The interpolation-supplemented lattice Boltzmann equation~ISLBE! method is used to simulate the two-
dimensional vortex shedding behind a circular cylinder at low Reynolds numbers. Simulations are carried out
on a polar-coordinate grid system with a dense grid distributed near the cylinder surface. The Strouhal number,
the drag, and the lift coefficients obtained from the simulations agree well with previous experimental mea-
surements and classical computational fluid dynamics simulations. Comparisons of detailed flow patterns with
other studies via streamlines and streaklines are also satisfactory. The ability of the ISLBE scheme to simulate
complicated long-term periodic flow phenomena is demonstrated.
@S1063-651X~97!00507-2#
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I. INTRODUCTION

The lattice Boltzmann equation~LBE! method has been
proposed as a useful computational fluid dynamics
proaches for simulations of complex flows@1,2#. Although
the lattice Boltzmann equation itself has long been prove
recover the Navier-Stokes equation through the Chapm
Enskog expansion@3,4#, the LBE method has not bee
widely accepted by the engineering community as a pract
computational fluid dynamics~CFD! tool. One reason for
this is the restriction of previous LBE models to the regu
lattices@5#. For many practical problems, a variable comp
tational mesh is always desired. There has been much a
ity in recent years to construct LBE schemes that can
implemented on a variable computational grid@6–8#. One of
these models, which will be specifically addressed in t
paper, is the interpolation-supplemented lattice Boltzma
equation~ISLBE! scheme@7#.

The restriction of the previous LBE models to regu
lattices has historical roots. This aspect is directly inheri
from the lattice-gas automaton~LGA! @9,10#, the precursor
of the LBE method. In the LGA, the time evolution of a flo
system is simulated by tracking the microscopic moveme
of constituent particles hopping between the sites of a reg
lattice. A regular lattice is essential for the LGA since t
particle population in the LGA is a Boolean type and t
particle collision must take place at lattice sites. This rest
tion, however, becomes redundant in the LBE method
cause a real-number single-particle distribution is used in
LBE method to replace the Boolean particle population
the LGA @7,8#. With a real-number representation, th
single-particle distribution can be regarded as a continu
function in the physical space and its value can be de
mined at any location in the computational domain.

In the ISLBE scheme, a flow domain is discretized into
arbitrary grid mesh. At each grid node sits a regular veloc
lattice. The ISLBE scheme consists of three steps: relaxa
advection, and interpolation. The first two steps are exa
the same as those of the previous LBE models: the distr
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tion function first relaxes to the local equilibrium distributio
and then freely advects at the corresponding velocity. T
interpolation step, which does not exist in the previous LB
models, is introduced to reconstruct the distribution funct
at grid nodes at the next time step. The interpolation sche
must have at least a second-order accuracy to avoid des
tive numerical diffusivity and viscosity@11#.

The ISLBE scheme was applied to a nonuniform rect
gular mesh in@7#. In this reference, numerical simulations
steady flow in a sudden expansion channel yielded satis
tory results. More convincing evidence comes from a la
study on flow around an impulsively started circular cylind
in which a polar coordinate grid system was used@12#. In
that study, the ISLBE simulation successfully reproduced
entire process of wake formation for Reynolds numb
ranging from 10 to 40. Characteristic steady-state para
eters, including wake length, separation angle, drag coe
cients, and stagnation pressure coefficients, agree well
previous experimental measurements and traditional C
simulations. For moderate and high Reynolds numb
(300,Re,9600), the ISLBE scheme was also able to sim
late correctly the initial stage of the flow development. Flo
features in this regime, such as the secondary vortex and
‘‘forewake,’’ were reproduced in ISLBE simulations@12#.
Nevertheless, there is another type of flow that is practica
important but was neglected in previous ISLBE studies. T
is the long-term unsteady flow phenomenon such as the
riodic vortex shedding behind a circular cylinder.

An understanding of the vortex shedding process behin
circular cylinder poses a challenge to both basic research
general applications. There are many studies on this topi
the literature, including those using the lattice Boltzma
equation method@13–15#. Excellent reviews have bee
given by Berger and Wille@16# and recently by Williamson
@17#. It is generally agreed that in two dimensions the vort
shedding begins at a critical Reynolds number around
@17#. Here the Reynolds number is defined as Re52Ua/n,
whereU is the far-field flow velocity,a is the radius of the
cylinder, andn is the viscosity. Above this critical Reynold
434 © 1997 The American Physical Society
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56 435LATTICE BOLTZMANN METHOD ON A CURVILINEAR . . .
number, vorticity is shed downstream from alternate side
the cylinder, forming a von Ka´rmán vortex street. The Strou
hal number (S5 fD/U, where f is the shedding frequency!
strongly depends on the Reynolds number. At low Reyno
numbers, the flow field is two dimensional. When the Re
nolds number increases to a second critical value aro
140–194, three-dimensional structure of the flow field b
comes essential~see, e.g.,@17#!.

This study will only focus on the two-dimensional~2D!
vortex shedding behind a circular cylinder. For this reas
the Reynolds numbers in the simulation are chosen to be
100, and 150. The Strouhal number, the drag, and the
coefficients will be compared with previous experimen
measurements and numerical simulations. In addition,
detailed flow pattern will be extensively analyzed using b
streamlines and streaklines. The rest of this paper is o
nized as follows. Section II introduces the ISLBE schem
The mesh setup, boundary condition, and initial condit
are also described in this section. Section III presents
results of numerical simulations and compares them w
previous studies. Section IV discusses the results and
cludes the paper.

II. NUMERICAL METHOD

Since the numerical method used in this study has b
described elsewhere@12#, only an outline is given here. Th
computational domain consists of a circular region of a la
but finite radius outside a 2D circular cylinder. This doma
is covered with a polar coordinate grid~Fig. 1!. The coordi-
nates of the grid nodes are

r i5aepj i, u j5ph j , ~1!

where

j i5j`

i21

NX21
, i51,2, . . . ,NX

h j52
j21

NY21
21, j51,2, . . . ,NY. ~2!

The logarithmic transformation of the radial coordinate
selected because it provides a dense grid near the cyli
where the largest gradients occur.
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The ISLBE scheme consists of three steps: relaxation,
vection, and interpolation. The first two steps are exactly
same as those in previous LBE models, i.e., the distribu
function is updated each time step using the lattice Bo
mann equation

pa~x1ead t ,t1d t!2pa~x,t !5
1

t
@ga~xt !2pa~x,t !#, ~3!

where pa is the pressure distribution andga is its corre-
sponding equilibrium state. Here the nine-bit incompressi
lattice Boltzmann BGK model@18# is used. The nine discret
velocitiesea are defined by

FIG. 1. Polar coordinate system and computational m
(NX3NY521361 andj`52/3 as an example!.
ea5H 0, a50

„cos@~a21!p/2#,sin@~a21!p/2#…c, a51, . . . ,4

A2„cos@~a25!p/21p/4#,sin@~a25!p/21p/4#…c, a55, . . . ,8.

~4!
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436 56XIAOYI HE AND GARY D. DOOLEN
The parametersc and d t are the advection speed and tim
step, respectively.t is the dimensionless relaxation tim
which is related to the fluid viscosity by

n5
2t21

6
c2d t .

The equilibrium pressure distributionga is chosen to be

ga5waFp1rS ~ea•u!1
3

2

~ea•u!2

c2
2
1

2
u2D G , ~5!

with w054/9, wa51/9 for a51, . . . ,4, andwa51/36 for
a55, . . . ,8. Thedensity r is constant in incompressibl
flows. The macroscopic pressurep and the velocityu are
calculated using

p5(
a

pa , ~6!

u5
1

rcs
2(

a
eapa , ~7!

wherecs5c/A3 is the sound speed.
According to Eq.~3!, the distribution function at the nex

time step is exactly known only atxi , j1ead t , wherexi , j ’s
are the grid nodes. An interpolation step is necessary to
construct the post-advection distribution at each grid no
Notice that, for eachea , the shifted computational domai

FIG. 2. Time evolution of the drag and lift coefficients fo
Re5100. Time is in units ofa/U.
e-
e.

x1ead t can be described by the same polar coordinate g
To reconstruct the distribution, it is convenient to calcula
the displacement from the original grid node

dj i5j~x2ead t!2j i ,

dh j5h~x2ead t!2h j .

Once the displacement is known, the post-advection distr
tion at the original grid node can be calculated using
second-order upwind interpolation scheme

pa~xi , j ,t1d t!5 (
k50

2

(
l50

2

ai ,kbj ,l pa~r i1k3 i d
,u j1 l3 j d

,t1d t!,

~8!

wherei d5sgn(1,dj i) and j d5sgn(1,dh j ) determine the up-
wind direction. The interpolation coefficients in Eq.~8! are
calculated using

ai ,05
~ udj i u2Dj!~ udj i u22Dj!

2Dj2
,

bj ,05
~ udh j u2Dh!~ udh j u22Dh!

2Dh2 ,

ai ,152
udj i u~ udj i u22Dj!

Dj2
, bj ,152

udh j u~ udh j u22Dh!

Dh2 ,

~9!

ai ,25
udj i u~ udj i u2Dj!

2Dj2
, bj ,25

udh j u~ udh j u2Dh!

2Dh2 ,

whereDj5j` /(NX21) andDh52/(NY21).
The nonslip boundary condition is applied at the cylind

wall. This study implements the nonslip condition using t
bounce-back rule. In the bounce-back rule, particles collid
with a wall simply reverse their velocities. Notice that th
bounce-back rule yields an effective wall halfway betwe
the bounce-back row and its adjacent row in the fluid@19#.
This effect should be taken into account in calculating
viscous stress on the cylinder.

FIG. 3. Comparison of the oscillatory drag and lift coefficien
in the final stage. Time is measured from the beginning of
simulation.
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56 437LATTICE BOLTZMANN METHOD ON A CURVILINEAR . . .
It is natural and computationally convenient to assum
potential flow at the outer boundary. With the far-field v
locity and pressure known, the distribution function can
chosen to be the equilibrium state. In this study, the far-fi
velocityU is set to 0.1 and the far-field pressurep` is set to
1/3.

Initially, the numerical simulation starts from an unsym
metric flow field

ux5U
ay

r 2
, uy52U

ax

r 2
. ~10!

This unsymmetric flow field serves as an artificial initiat
for the vortex shedding process. For Reynolds numbers
than the critical value (Recrt'49), this asymmetry is gradu
ally dissipated by viscosity~data not shown!. For the Rey-
nolds numbers chosen in this study (Re.Recrt), the flow
field eventually settles into a periodic oscillatory pattern.

III. RESULTS

The numerical simulations of the vortex shedding beh
a circular cylinder were carried out for Reynolds numbers
50, 100, and 150. Unless otherwise stated, all the repo
data are obtained on a 1813241 grid. The outer boundary i
located atj`51.5 orr` /a5111.3. The time step, in units o
a/U, is equal to 0.0025. The CPU time for each time s
requires 0.2 s on an IBM-RISC 6000 workstation with a pe
performance of 2673106 flops.

TABLE I. Comparison of the calculated and measured Strou
numbers.

Work Re5 50 Re5 100 Re5 150

Ref. @16# 0.12–0.13 0.16–0.17 0.18–0.19
Ref. @20# 0.12 0.16 0.18
Ref. @21# 0.123 0.164 0.183
Ref. @22# 0.105 0.159 0.176
present 0.121 0.161 0.179

TABLE II. Comparisons of the drag and lift coefficients.C̄D ,
average drag coefficient;DCD , drag oscillation~peak to peak!;
DCL , lift oscillation ~peak to peak!.

Re Work C̄D
DCD DCL

50 Ref.@25# 1.40
Ref. @26# 1.45
present 1.394 0.002 0.11

100 Ref.@25# 1.25
Ref. @27# 1.28 0.012 0.54
Ref. @28# 1.28 0.03 0.60
Ref. @26# 1.35
present 1.287 0.018 0.64

150 Ref.@26# 1.33
present 1.261 0.048 0.98
a
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A. Vortex shedding and Strouhal number

The most attractive feature of the vortex shedding behin
a circular cylinder is the periodic variation of the flow field
This periodicity has been successfully reproduced in th
study. The periodic variation of the flow field can be illus

FIG. 4. Sequence of streamlines in a complete shedding cyc
separated by intervals ofT/5 (Re5100).
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438 56XIAOYI HE AND GARY D. DOOLEN
trated by the time evolution of two characteristic paramete
the drag and lift coefficients, defined as

CD5
F•x

rU2a
, CL5

F•y

rU2a
.

The total force acting on the circular cylinderF, arises from
the surface pressure and shear stress. It can be calcu
using

F5E S•ndl.

The integral is taken over the cylinder surface,n is the nor-
mal direction of the cylinder wall, and

S52pI1rn~¹u1u¹!

is the stress tensor.
As shown in Fig. 2, the drag and lift coefficients varie

irregularly at the beginning of each simulation due to t
initial disturbance. After a certain time, these coefficie
gradually evolved to periodic oscillations. The lift coefficie
oscillated much more strongly than the drag coefficie
More detail about the final periodic state is shown in Fig.
The drag coefficient varies twice as fast as the lift coeffici
as observed in previous studies@27,28#. This is because the
drag coefficient is affected by vortex shedding proces
from both sides of the cylinder.

The vortex shedding frequency can be obtained by m
suring the final period of the lift coefficient. The calculate
Strouhal numbers are listed in Table I for Reynolds numb
of 50, 100, and 150, along with some previous experime
measurements. There once was considerable discussio
what factors affect the St-Re number relationship@23,24#. It
is now generally believed that a universal St-Re curve ex
for parallel vortex shedding@17#. The Strouhal numbers ob
tained in this study agree very well with the experimen
measurements.

The average values and oscillations~peak to peak! of the
drag and lift coefficients are listed in Table II. Also include
are results from previous experimental measurements
numerical simulations. For all the Reynolds numbers sim
lated, agreement between the present and previous stud
satisfactory for the average drag coefficients. Our aver
s,

ted

s

t.
.
t

s

a-
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al
on

ts

l

nd
-
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e

drag coefficients are consistently smaller than the comp
tional results of Henderson@26#, but they are close to thos
reported by other authors. Comparisons of oscillations of
drag and lift coefficients are less satisfactory, but all the d
are of the same order. Because the existing data for the
cillations of the drag and lift coefficients are rare, the re
ability of our results can only be justified by future studie

B. Streamlines

The global view of the vortex shedding process can
well illustrated using streamline plots. Since the flow p
terns are similar for all the Reynolds numbers simulat
only the result for the Reynolds number of 100 will be pr
sented. Following Perryet al. @29# and Eaton@30#, we use
some special terms in describing the streamline patte
These special terms include centers, which are points
rounded by closed streamlines; saddles, which are po
where a streamline crosses itself; and separatrices, which
streamlines that contain a saddle points.

Figure 4 shows the time evolution of vortex sheddi
over a complete cycle using a sequence of streamlines s
rated by intervals ofT/5, whereT is the period of the shed
ding cycle. Thick lines are used to distinguish the sepa
trices from ordinary streamlines. At the beginning of t
shedding cycle@Fig. 4~a!#, a large recirculation zone attache
to the top of the cylinder and a vortex shed in the last cy
from the bottom of the cylinder was still visible. One-fifth o
the period later@Fig. 4~b!#, the recirculation zone at the to
had broken off from the cylinder wall to form a new vorte
while another recirculation zone appeared at the bottom
the cylinder. The newly shed vortex gradually lost
strength as it traveled downstream@Fig. 4~c!#, and disap-
peared before another recirculation zone was generated a
top of the cylinder@Fig. 4~d!#. In the meantime, the recircu
lation zone at the bottom of the cylinder gradually gain
strength and then broke off into the wake to complete a sh
ding cycle@Figs. 4~e! and 4~f!#.

The flow patterns in Fig. 4 are very similar to the expe
mental observations by Perryet al. @29# and the numerical
simulations by Eaton@30#. One of the salient features i
these streamline plots is the instant ‘‘alleyways’’ betwe
two separatrices. Through these alleyways, fluid passing
cylinder surface flows up and down to move around the s
vortices and finally reaches the main stream. However,
FIG. 5. von Kármán vortex street behind a circular cylinder using the ISLBE simulation (Re5100).
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56 439LATTICE BOLTZMANN METHOD ON A CURVILINEAR . . .
results did not show the coexistence of centers and saddl
two shed vortices as suggested by Perryet al.This observa-
tion is consistent with Eaton’s numerical simulation.

The separation angles in our simulations were also fo
to oscillate at the shedding frequency. For the Reyno
number of 100, our simulation gives an average separa
angle of 61° with an oscillation amplitude of 3°. These da
agree with the numerical results of 63°63° by Jordan and
Fromm @27#, 64°63° by Patel @31#, and 63.5°63.5° by
Brazaet al. @28#. It is not clear why our separation angle
slightly smaller than those in previous studies. For other t
Reynolds numbers, our simulations yield a separation an
of 55°60.5° for Re550 and 63°65° for Re5150.

C. Streaklines

Although the instantaneous streamlines provide valua
information on variations of flow fields in vortex sheddin
they do not give a clear picture of the vortex formation p
cess. This is why the streakline technique~e.g., dye visual-
ization! has been extensively used in many experiments.
demonstrate the ability of the ISLBE scheme to simulate
vortex shedding process, this section presents streak
generated from the ISLBE simulation for the Reynolds nu
ber of 100 and compares them with previous experime
observations and numerical simulations.

The streaklines can be calculated by numerically integ
ing the equation

dx

dt
5u~x!, ~11!

where x is particle coordinates in streaklines andu is the
local velocity. Figure 5 shows a typical von Ka´rmán vortex
street obtained by an ISLBE simulation. A total of ten strea
lines were generated by releasing trace particles in inter
of 0.025a/U. Five streaklines originate from 0.01, 0.0
0.03, 0.04, and 0.05 diameters above the top of the cylin
respectively, while the others start from the same distan
below the bottom of the cylinder. The flow pattern is stri
ingly similar to the experimental observation by Taneda
ing a dye visualization technique@32#.

It is important to notice the nonuniform movements of t
trace particles in Fig. 5. MarkersA, B, andC denote three
trace particles released consecutively from the same loca
~0.05 diameter above the top of the cylinder!. Although the
initial distance between them was only 0.025a, they deviated
from each other by quite a distance after several shed
cycles. Most of the trace particles aggregate into the core
the von Kármán vortices, while the rest of them are signifi
cantly stretched to form the delicate filaments connect
two consecutive vortex cores. The approach of particles fr
the opposite sides of the cylinder is quite clear. This resu
consistent with the ‘‘fingering’’ or ‘‘multiple-folding’’ phe-
nomenon observed by Gerrard@20# and Perryet al. @29#.

To better illustrate the evolution of the streaklines, w
connected the trace particles by lines to generate continu
streaklines. To avoid discontinuities, new trace particles
inserted wherever a streakline segment is severely stretc
Figure 6 shows a sequence of streaklines over a shed
cycle, separated by intervals ofT/5. The times represente
of
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ing FIG. 6. Sequence of streaklines in a complete shedding cy
separated by intervals ofT/5 (Re5100).
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440 56XIAOYI HE AND GARY D. DOOLEN
here correspond exactly to those at which the streaml
were presented in Fig. 4. For clarity, only two streaklines
each side (0.05 diameter away from the cylinder wall! are
plotted. Figure 6 clearly shows how vortices are genera
over a shedding cycle. Near the top of the cylinder, the fl
just passing the cylinder travels rapidly and in a relat
straight path. Since the fluids in the near wake move do
ward in the first half of the shedding cycle@see Figs. 4~a!–
4~c!#, the streaklines are pulled apart to form a small fo
@Fig. 6~a!#. This fold gradually extrudes into the wake
generate an antennalike structure@Figs. 6~b! and 6~c!#. In the
meantime, the ‘‘antenna’’ was rotated clockwise by the sh
stress and gradually grew into a von Ka´rmán vortex core.
The same process occurs at the bottom of the cylinder in
second half of the shedding cycle@Figs. 6~d!–6~f!#. A coun-
terclockwise vortex is shed into the wake from the bottom
the cylinder.

The streakline pattern in Fig. 6 is very much like th
‘‘threading diagram’’ proposed by Perryet al. @29# except
for one important difference. In the threading diagram
Perryet al., ‘‘threads’’ are pulled back from the downstrea
vortices and end in the near wake. The present result sh
that some of these threads fold again and extrude into
downstream vortices. Because of these extruding thre
each von Ka´rmán vortex contains multiple layers of strea
lines. Each of these layers is composed of particles relea
in different cycles. Particles in the inner most layer are th
released earliest. In the near wake, fluids are continuo
squeezed out along with the extruding threads. Howe
tt.
es
n

d
d

-

r

e

f

y

ws
he
s,

ed
e
ly
r,

there are always some fluids remaining in the wake beca
the proximal ends of the streaklines move very little ov
cycles. The extensive mixing behind the cylinder is obvio

IV. CONCLUSION

The interpolation-supplemented lattice Boltzmann eq
tion scheme was successfully applied to simulate the 2D v
tex shedding phenomenon behind a circular cylinder
Reynolds numbers ranging from 50 to 150. The simulatio
are carried out on a polar coordinate grid with a dense g
distribution near the cylinder wall. The Strouhal numbe
the drag, and the lift coefficients are found to be in go
agreement with previous experimental measurements
classical CFD studies. The detailed flow patterns are a
consistent with previous experimental observations and
merical simulations. The instant alleyways of the streamlin
and the multiple foldings of the streaklines are successf
reproduced in simulations.

The success of this study shows that the ISLBE sche
can be used as a versatile CFD tool with the ability to sim
late complicated flows. With the ISLBE scheme, the restr
tion to regular lattices of previous LBE models is no long
necessary and a variable grid can be used as desired
though previous studies@7,12# have shown the accuracy o
the ISLBE scheme in simulation of steady or short-term u
steady flows, this study demonstrates the ability of
ISLBE scheme to simulate long-term unsteady flows.
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