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Lattice Boltzmann method on a curvilinear coordinate system:
Vortex shedding behind a circular cylinder
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The interpolation-supplemented lattice Boltzmann equatiShBE) method is used to simulate the two-
dimensional vortex shedding behind a circular cylinder at low Reynolds numbers. Simulations are carried out
on a polar-coordinate grid system with a dense grid distributed near the cylinder surface. The Strouhal number,
the drag, and the lift coefficients obtained from the simulations agree well with previous experimental mea-
surements and classical computational fluid dynamics simulations. Comparisons of detailed flow patterns with
other studies via streamlines and streaklines are also satisfactory. The ability of the ISLBE scheme to simulate
complicated long-term periodic flow phenomena is demonstrated.
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[. INTRODUCTION tion function first relaxes to the local equilibrium distribution
and then freely advects at the corresponding velocity. The
The lattice Boltzmann equatioft BE) method has been interpolation step, which does not exist in the previous LBE
proposed as a useful computational fluid dynamics apmodels, is introduced to reconstruct the distribution function
proaches for simulations of complex flows,2]. Although  at grid nodes at the next time step. The interpolation scheme
the lattice Boltzmann equation itself has long been proved tenust have at least a second-order accuracy to avoid destruc-
recover the Navier-Stokes equation through the Chapmartive numerical diffusivity and viscosity11].
Enskog expansiori3,4], the LBE method has not been  The ISLBE scheme was applied to a nonuniform rectan-
widely accepted by the engineering community as a practicajular mesh if7]. In this reference, numerical simulations of
computational fluid dynamicéCFD) tool. One reason for steady flow in a sudden expansion channel yielded satisfac-
this is the restriction of previous LBE models to the regulartory results. More convincing evidence comes from a later
lattices[5]. For many practical problems, a variable compu-study on flow around an impulsively started circular cylinder
tational mesh is always desired. There has been much actiin which a polar coordinate grid system was u$éd]. In
ity in recent years to construct LBE schemes that can bé¢hat study, the ISLBE simulation successfully reproduced the
implemented on a variable computational ditd-8]. One of  entire process of wake formation for Reynolds numbers
these models, which will be specifically addressed in thiganging from 10 to 40. Characteristic steady-state param-
paper, is the interpolation-supplemented lattice Boltzmanrters, including wake length, separation angle, drag coeffi-
equation(ISLBE) schemd 7]. cients, and stagnation pressure coefficients, agree well with
The restriction of the previous LBE models to regular previous experimental measurements and traditional CFD
lattices has historical roots. This aspect is directly inheritecsimulations. For moderate and high Reynolds numbers
from the lattice-gas automatqhGA) [9,10], the precursor (300<Re<9600), the ISLBE scheme was also able to simu-
of the LBE method. In the LGA, the time evolution of a flow late correctly the initial stage of the flow development. Flow
system is simulated by tracking the microscopic movementfgatures in this regime, such as the secondary vortex and the
of constituent particles hopping between the sites of a regulaiforewake,” were reproduced in ISLBE simulatior{d.2].
lattice. A regular lattice is essential for the LGA since theNevertheless, there is another type of flow that is practically
particle population in the LGA is a Boolean type and theimportant but was neglected in previous ISLBE studies. That
particle collision must take place at lattice sites. This restricis the long-term unsteady flow phenomenon such as the pe-
tion, however, becomes redundant in the LBE method beriodic vortex shedding behind a circular cylinder.
cause a real-number single-particle distribution is used in the An understanding of the vortex shedding process behind a
LBE method to replace the Boolean particle population incircular cylinder poses a challenge to both basic research and
the LGA [7,8]. With a real-number representation, the general applications. There are many studies on this topic in
single-particle distribution can be regarded as a continuouthe literature, including those using the lattice Boltzmann
function in the physical space and its value can be deterequation method13-15. Excellent reviews have been
mined at any location in the computational domain. given by Berger and Will¢16] and recently by Williamson
In the ISLBE scheme, a flow domain is discretized into an[17]. It is generally agreed that in two dimensions the vortex
arbitrary grid mesh. At each grid node sits a regular velocityshedding begins at a critical Reynolds number around 49
lattice. The ISLBE scheme consists of three steps: relaxation17]. Here the Reynolds number is defined as=R&a/v,
advection, and interpolation. The first two steps are exactlyvhereU is the far-field flow velocitya is the radius of the
the same as those of the previous LBE models: the distribweylinder, andv is the viscosity. Above this critical Reynolds
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number, vorticity is shed downstream from alternate sides of
the cylinder, forming a von Kanan vortex street. The Strou-
hal number §=fD/U, wheref is the shedding frequengy
strongly depends on the Reynolds number. At low Reynolds
numbers, the flow field is two dimensional. When the Rey-
nolds number increases to a second critical value around
140-194, three-dimensional structure of the flow field be-
comes essentidbee, e.9.[17)).

This study will only focus on the two-dimensionéD)
vortex shedding behind a circular cylinder. For this reason,
the Reynolds numbers in the simulation are chosen to be 50,
100, and 150. The Strouhal number, the drag, and the lift
coefficients will be compared with previous experimental
measurements and numerical simulations. In addition, the
detailed flow pattern will be extensively analyzed using both
streamlines and streaklines. The rest of this paper is orga-
nized as follows. Section Il introduces the ISLBE scheme.
The mesh setup, boundary condition, and initial condition
are also described in this section. Section Il presents the
results of numerical simulations and compares them with
previous studies. Section IV discusses the results and con-
cludes the paper.

Il. NUMERICAL METHOD

Since the numerical method used in this study has been
described elsewhefd 2], only an outline is given here. The
computational domain consists of a circular region of a large
but finite radius outside a 2D circular cylinder. This domain
is covered with a polar coordinate griflig. 1). The coordi-
nates of the grid nodes are

FIG. 1. Polar coordinate system and computational mesh
(NXXNY=21x61 and¢,=2/3 as an example

ri=ae™i, 6;=my, (1)
where
i_ .
§| gocNX 1, |:1,2,...,NX
) j=1,2 2
m=2y—7 L i=12...NY. (2)

The ISLBE scheme consists of three steps: relaxation, ad-
vection, and interpolation. The first two steps are exactly the
same as those in previous LBE models, i.e., the distribution
function is updated each time step using the lattice Boltz-
mann equation

1
Pa(X+€,01,1+ 8) = Pa(X, D) =—[9a(X) = Pa(X,D)], (3)

where p,, is the pressure distribution argl, is its corre-

The logarithmic transformation of the radial coordinate issponding equilibrium state. Here the nine-bit incompressible
selected because it provides a dense grid near the cylindéattice Boltzmann BGK moddl18] is used. The nine discrete

where the largest gradients occur.

0, a=0

velocitiese, are defined by

e,=4 (cod(a—1)m/2],siM(a—1)nm/2])c, a=1,...,4 (4)
J2(co$ (@—5)w/2+ wl4],sir (a—5) w/2+ =wl4])c, a=5,...,8.
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The parameters and 6; are the advection speed and time x+e, s, can be described by the same polar coordinate grid.
step, respectivelyr is the dimensionless relaxation time, To reconstruct the distribution, it is convenient to calculate

which is related to the fluid viscosity by the displacement from the original grid node
= 276_1025" dé§i=&(x—e0) &,

_ o dnj=n(X—€,6)— n;.
The equilibrium pressure distributiay, is chosen to be
Once the displacement is known, the post-advection distribu-
5) tion at the original grid node can be calculated using a
' second-order upwind interpolation scheme

3(g,-u)? 1

3 — 2
CRINES

= —+ — =
Ja=Wy PTp CZ 2

with wy=4/9, w,=1/9 for =1, ...,4, andw,=1/36 for 2
a=5,...,8. Thedensity p is constant in incompressible P.(X;,t+ )= > 8 kbj 1Pk g ) +1x) ot ),

flows. The macroscopic pressupeand the velocityu are k=01=0 ®)
calculated using
whereiy=sgn(1d¢;) andjq=sgn(1d»;) determine the up-
pZE [ (6)  wind direction. The interpolation coefficients in E@) are
@ calculated using
1 (Jd&|—A&)(|d&[-2A¢)
u= €.Pa> 7 o= !
P_Cgé p ( ) alvo 2A §2 ’
wherecs=_c/ J3 is the sound_ sp.eed_. _ (|dn|—An)(|dnp|—2A7)
According to Eq.(3), the distribution function at the next bj o= oA 2 )
time step is exactly known only & ;+e,d;, wherex; ;'s 7
are the grid nodes. An interpolation step is necessary to re- _ _
construct the post-advection distribution at each grid nodeg, = — |dil(|dé |2 2A§), = [dl([d7, |2 247) ,
Notice that, for eacte,, the shifted computational domain A b Any ©
2.0 ' '
_|d&[(]d&|-A¢) _|dw;l(Jdn;|—An)
ai,Z_T§Zx bj .= 28 7 ,

whereAé=¢, /(NX—1) andAnp=2/(NY—-1).

The nonslip boundary condition is applied at the cylinder
wall. This study implements the nonslip condition using the
bounce-back rule. In the bounce-back rule, particles colliding
with a wall simply reverse their velocities. Notice that the
0.5F . bounce-back rule yields an effective wall halfway between
the bounce-back row and its adjacent row in the fli€l].
This effect should be taken into account in calculating the
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FIG. 3. Comparison of the oscillatory drag and lift coefficients
FIG. 2. Time evolution of the drag and lift coefficients for in the final stage. Time is measured from the beginning of the
Re=100. Time is in units of/U. simulation.
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TABLE I. Comparison of the calculated and measured Strouhal
numbers.

Work Re = 50 Re= 100 Re= 150
Ref.[16] 0.12-0.13 0.16-0.17 0.18-0.19
Ref.[20] 0.12 0.16 0.18
Ref. [21] 0.123 0.164 0.183
Ref.[22] 0.105 0.159 0.176
present 0.121 0.161 0.179

It is natural and computationally convenient to assume ¢
potential flow at the outer boundary. With the far-field ve-
locity and pressure known, the distribution function can be ~2%
chosen to be the equilibrium state. In this study, the far-fielc
velocity U is set to 0.1 and the far-field pressurg is set to h
1/3.

Initially, the numerical simulation starts from an unsym-
metric flow field

ay ax
UX=Ur—2, Uy=—Ur—2. (10)
- o e
This unsymmetric flow field serves as an artificial initiator ——o__ T \\‘, i

for the vortex shedding process. For Reynolds numbers les
than the critical value (Rg~49), this asymmetry is gradu-
ally dissipated by viscositydata not shown For the Rey-
nolds numbers chosen in this study (RRe.), the flow
field eventually settles into a periodic oscillatory pattern.

Ill. RESULTS

The numerical simulations of the vortex shedding behinc
a circular cylinder were carried out for Reynolds numbers of
50, 100, and 150. Unless otherwise stated, all the reporte
data are obtained on a 18241 grid. The outer boundary is
located att,,=1.5 orr,,/a=111.3. The time step, in units of
a/U, is equal to 0.0025. The CPU time for each time stef
requires 0.2 s on an IBM-RISC 6000 workstation with a peak
performance of 26% 10° flops.

TABLE Il. Comparisons of the drag and lift coefficient?o,
average drag coefficienACp, drag oscillation(peak to peak
AC, , lift oscillation (peak to peak

Re Work Cp ACp AC,
50 Ref.[25] 1.40
Ref. [26] 1.45
present 1.394 0.002 0.11
100 Ref.[25] 1.25
Ref. [27] 1.28 0.012 0.54 FIG. 4. Sequence of streamlines in a complete shedding cycle,
Ref.[28] 1.28 0.03 0.60 separated by intervals df/5 (Re=100).
Ref. 126] 135 AV heddi d Strouhal b
present 1.287 0.018 0.64 . Vortex she Ing an trouhal number
The most attractive feature of the vortex shedding behind
150 Ref.[26] 1.33 a circular cylinder is the periodic variation of the flow field.
present 1.261 0.048 0.98 This periodicity has been successfully reproduced in this

study. The periodic variation of the flow field can be illus-
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trated by the time evolution of two characteristic parametersgdrag coefficients are consistently smaller than the computa-

the drag and lift coefficients, defined as tional results of Hendersaii26], but they are close to those
reported by other authors. Comparisons of oscillations of the
Co= F-x _Fy drag and lift coefficients are less satisfactory, but all the data
D™ pu?a’ " pU?a’ are of the same order. Because the existing data for the os-

cillations of the drag and lift coefficients are rare, the reli-

The total force acting on the circular cylinder arises from  ability of our results can only be justified by future studies.

the surface pressure and shear stress. It can be calculated
using B. Streamlines

The global view of the vortex shedding process can be

F=| S-ndl. well illustrated using streamline plots. Since the flow pat-

terns are similar for all the Reynolds numbers simulated,

The integral is taken over the cylinder surfands the nor-  only the result for the Reynolds number of 100 will be pre-

mal direction of the cylinder wall, and sented. Following Perrgt al. [29] and Eaton[30], we use
some special terms in describing the streamline patterns.
S=—pl+pv(Vu+uVv) These special terms include centers, which are points sur-
rounded by closed streamlines; saddles, which are points
is the stress tensor. where a streamline crosses itself; and separatrices, which are

As shown in Fig. 2, the drag and lift coefficients varied streamlines that contain a saddle points.
irregularly at the beginning of each simulation due to the Figure 4 shows the time evolution of vortex shedding
initial disturbance. After a certain time, these coefficientsover a complete cycle using a sequence of streamlines sepa-
gradually evolved to periodic oscillations. The lift coefficient rated by intervals off /5, whereT is the period of the shed-
oscillated much more strongly than the drag coefficientding cycle. Thick lines are used to distinguish the separa-
More detail about the final periodic state is shown in Fig. 3.trices from ordinary streamlines. At the beginning of the
The drag coefficient varies twice as fast as the lift coefficienshedding cycl¢Fig. 4a)], a large recirculation zone attached
as observed in previous studigx7,28. This is because the to the top of the cylinder and a vortex shed in the last cycle
drag coefficient is affected by vortex shedding processefrom the bottom of the cylinder was still visible. One-fifth of
from both sides of the cylinder. the period latefFig. 4(b)], the recirculation zone at the top

The vortex shedding frequency can be obtained by meaiad broken off from the cylinder wall to form a new vortex,
suring the final period of the lift coefficient. The calculated while another recirculation zone appeared at the bottom of
Strouhal numbers are listed in Table | for Reynolds numbershe cylinder. The newly shed vortex gradually lost its
of 50, 100, and 150, along with some previous experimentastrength as it traveled downstredrig. 4(c)], and disap-
measurements. There once was considerable discussion paared before another recirculation zone was generated at the
what factors affect the St-Re number relationdl#g,24]. It  top of the cylinde{Fig. 4(d)]. In the meantime, the recircu-
is now generally believed that a universal St-Re curve existtation zone at the bottom of the cylinder gradually gained
for parallel vortex sheddinfl7]. The Strouhal numbers ob- strength and then broke off into the wake to complete a shed-
tained in this study agree very well with the experimentalding cycle[Figs. 4e) and 4f)].
measurements. The flow patterns in Fig. 4 are very similar to the experi-

The average values and oscillatioipeak to peakof the  mental observations by Perst al. [29] and the numerical
drag and lift coefficients are listed in Table Il. Also included simulations by Eatorf30]. One of the salient features in
are results from previous experimental measurements arttiese streamline plots is the instant “alleyways” between
numerical simulations. For all the Reynolds numbers simutwo separatrices. Through these alleyways, fluid passing the
lated, agreement between the present and previous studiesciginder surface flows up and down to move around the shed
satisfactory for the average drag coefficients. Our averageortices and finally reaches the main stream. However, our

FIG. 5. von Kaman vortex street behind a circular cylinder using the ISLBE simulation=Rg0).
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results did not show the coexistence of centers and saddles
two shed vortices as suggested by Peatral. This observa-
tion is consistent with Eaton’s numerical simulation.

The separation angles in our simulations were also foun:
to oscillate at the shedding frequency. For the Reynold: @
number of 100, our simulation gives an average separatio
angle of 61° with an oscillation amplitude of 3°. These data
agree with the numerical results of 683° by Jordan and
Fromm [27], 64°+3° by Patel[31], and 63.5%*3.5° by
Brazaet al.[28]. It is not clear why our separation angle is
slightly smaller than those in previous studies. For other twc
Reynolds numbers, our simulations yield a separation angl
of 55°+0.5° for Re=50 and 63%5° for Re=150.

C. Streaklines

Although the instantaneous streamlines provide valuabli
information on variations of flow fields in vortex shedding,
they do not give a clear picture of the vortex formation pro-
cess. This is why the streakline technigleeg., dye visual-
ization has been extensively used in many experiments. Ti
demonstrate the ability of the ISLBE scheme to simulate the
vortex shedding process, this section presents streakline
generated from the ISLBE simulation for the Reynolds num- @
ber of 100 and compares them with previous experimente
observations and numerical simulations.

The streaklines can be calculated by numerically integrat
ing the equation

dx
Fri u(x), (11

where x is particle coordinates in streaklines ands the
local velocity. Figure 5 shows a typical von Kaan vortex
street obtained by an ISLBE simulation. A total of ten streak-
lines were generated by releasing trace particles in interval
of 0.02m/U. Five streaklines originate from 0.01, 0.02,
0.03, 0.04, and 0.05 diameters above the top of the cylinde
respectively, while the others start from the same distance
below the bottom of the cylinder. The flow pattern is strik-
ingly similar to the experimental observation by Taneda us
ing a dye visualization techniqyé?2].

It is important to notice the nonuniform movements of the
trace particles in Fig. 5. Markers, B, andC denote three
trace particles released consecutively from the same locatic
(0.05 diameter above the top of the cylindeklthough the
initial distance between them was only 0.@2%hey deviated
from each other by quite a distance after several sheddin
cycles. Most of the trace particles aggregate into the cores ¢
the von Kaman vortices, while the rest of them are signifi-
cantly stretched to form the delicate filaments connecting
two consecutive vortex cores. The approach of particles fron
the opposite sides of the cylinder is quite clear. This result it
consistent with the “fingering” or “multiple-folding” phe-
nomenon observed by Gerrgr2l0] and Perryet al. [29].

To better illustrate the evolution of the streaklines, we
connected the trace particles by lines to generate continuot
streaklines. To avoid discontinuities, new trace particles ar
inserted wherever a streakline segment is severely stretched.

Figure 6 shows a sequence of streaklines over a shedding FIG- 6. Sequence of streaklines in a complete shedding cycle,
cycle, separated by intervals 5. The times represented Separated by intervals Gi/5 (Re=100).
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here correspond exactly to those at which the streamlinethere are always some fluids remaining in the wake because
were presented in Fig. 4. For clarity, only two streaklines onthe proximal ends of the streaklines move very little over
each side (0.05 diameter away from the cylinder walle  cycles. The extensive mixing behind the cylinder is obvious.
plotted. Figure 6 clearly shows how vortices are generated

over a shedding cycle. Near the top of the cylinder, the fluid

just passing the cylinder travels rapidly and in a relative IV. CONCLUSION
straight path. Since the fluids in the near wake move down-
ward in the first half of the shedding cydsee Figs. é)— The interpolation-supplemented lattice Boltzmann equa-

4(c)], the streaklines are pulled apart to form a small foldtion scheme was successfully applied to simulate the 2D vor-
[Fig. 6(@)]. This fold gradually extrudes into the wake to tex shedding phenomenon behind a circular cylinder for
generate an antennalike struct{ifégs. Gb) and Gc)]. Inthe  Reynolds numbers ranging from 50 to 150. The simulations
meantime, the “antenna” was rotated clockwise by the sheaare carried out on a polar coordinate grid with a dense grid
stress and gradually grew into a von ri€an vortex core.  distribution near the cylinder wall. The Strouhal numbers,
The same process occurs at the bottom of the cylinder in ththe drag, and the lift coefficients are found to be in good
second half of the shedding cydlEigs. 6d)—6(f)]. A coun-  agreement with previous experimental measurements and
terclockwise vortex is shed into the wake from the bottom ofclassical CFD studies. The detailed flow patterns are also
the cylinder. consistent with previous experimental observations and nu-
The streakline pattern in Fig. 6 is very much like the merical simulations. The instant alleyways of the streamlines
“threading diagram” proposed by Permt al. [29] except and the multiple foldings of the streaklines are successfully
for one important difference. In the threading diagram byreproduced in simulations.
Perryet al, “threads” are pulled back from the downstream  The success of this study shows that the ISLBE scheme
vortices and end in the near wake. The present result showsn be used as a versatile CFD tool with the ability to simu-
that some of these threads fold again and extrude into thiate complicated flows. With the ISLBE scheme, the restric-
downstream vortices. Because of these extruding threadpn to regular lattices of previous LBE models is no longer
each von Kaman vortex contains multiple layers of streak- necessary and a variable grid can be used as desired. Al-
lines. Each of these layers is composed of particles releasebiough previous studi€¥,12] have shown the accuracy of
in different cycles. Particles in the inner most layer are thosg¢he ISLBE scheme in simulation of steady or short-term un-
released earliest. In the near wake, fluids are continuouslgteady flows, this study demonstrates the ability of the
squeezed out along with the extruding threads. HowevedSLBE scheme to simulate long-term unsteady flows.
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